Design of low band gap polymers employing density functional theory?hybrid functionals ameliorate band gap problem

Author(s):  
U. Salzner ◽  
J. B. Lagowski ◽  
P. G. Pickup ◽  
R. A. Poirier
2016 ◽  
Vol 18 (2) ◽  
pp. 1017-1024 ◽  
Author(s):  
Jamin Ku ◽  
Yeongrok Gim ◽  
Yves Lansac ◽  
Yun Hee Jang

Low-band-gap push–pull copolymers are promising donor materials for bulk heterojunction organic solar cells.


2011 ◽  
Vol 60 (9) ◽  
pp. 1408-1418 ◽  
Author(s):  
Pansheng Ou ◽  
Wei Shen ◽  
Rongxing He ◽  
Xiaohua Xie ◽  
Chenglu Zeng ◽  
...  

2015 ◽  
Vol 242 ◽  
pp. 434-439 ◽  
Author(s):  
Vasilii E. Gusakov

Within the framework of the density functional theory, the method was developed to calculate the band gap of semiconductors. We have evaluated the band gap for a number of monoatomic and diatomic semiconductors (Sn, Ge, Si, SiC, GaN, C, BN, AlN). The method gives the band gap of almost experimental accuracy. An important point is the fact that the developed method can be used to calculate both localized states (energy deep levels of defects in crystal), and electronic properties of nanostructures.


2016 ◽  
Vol 4 (29) ◽  
pp. 11498-11506 ◽  
Author(s):  
Taehun Lee ◽  
Yonghyuk Lee ◽  
Woosun Jang ◽  
Aloysius Soon

Using first-principles density-functional theory calculations, we investigate the advantage of using h-WO3 (and its surfaces) over the larger band gap γ-WO3 phase for the anode in water splitting. We demonstrate that h-WO3 is a good alternative anode material for optimal water splitting efficiencies.


2018 ◽  
Vol 7 (6) ◽  
pp. 469-473 ◽  
Author(s):  
Wei Li ◽  
Yun Zhao ◽  
Teng Wang

AbstractAbsorption of Pb ion on the (n, 0) carbon nanotube (CNT) (n=4, 5, 6) surface, pure and defected with single vacancy, is investigated based on density functional theory. Pristine (n, 0) CNTs can produce a certain degree of chemical adsorption of Pb ion. While a single vacancy is introduced, the adsorption ability of CNTs for Pb ion increases greatly, and the band gap changes significantly before and after adsorption. SV-(6, 0) CNTs have the strongest adsorption ability, and SV-(5, 0) CNTs are the potential material for the Pb ion detection sensor. It is expected that these could be helpful to the design of Pb filters and sensors.


2020 ◽  
Author(s):  
Hugo Souza ◽  
Antonio Chaves Neto ◽  
Francisco Sousa ◽  
Rodrigo Amorim ◽  
Alexandre Reily Rocha ◽  
...  

In this work, we investigate the effects of building block separation of Phenylalanine-Tryptophan nanotube induced by the confined water molecules on the electronic properties using density-functional theory based tight-binding method. <div><br></div>


Sign in / Sign up

Export Citation Format

Share Document